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Abstract

Code search is a foundational task in software development,
which studies semantic similarity between natural language
queries and program code. Recent years have witnessed great
progress made in code search. However, researchers tend to
pre-train a code representation model in different program
languages so that it can be used in code related downstream
problems and then fine-tune it in code search with a spe-
cific program language. Our empirical study shows that there
may be performance damage when fine-tuning code search in
multiple program languages. We believe that it is caused by
the entanglement between code identity information and code
sentiment information. Therefore, we proposed two disentan-
gling strategies. One is leveraging a generator to obtain vec-
tors without identity information, based on the idea of GAN
(Generative Adversarial Network). The other is to maximize
the KL (Kullback–Leibler) divergence between identity and
semantic vectors.

1 Introduction
Code search plays a vital role in the software development
process, which is an essential field of Software Engineering
and studies the semantic similarity between natural language
queries and program code. Recent years have witnessed a
massive increment in source code. The statistic shows that
more than 60 million new projects were created only in
2020 (Forsgren et al. 2021). Thus, code search engines can
improve the development efficiency of program developers,
enabling them to search for existing code or examples of
some API (Application Programming Interface) instead of
“rebuilding wheels.”

As deep learning has grown by leaps and bounds in re-
cent years, a number of methods have been proposed in
code search, such as Recurrent Neural Network (RNN)
based models (Gu, Zhang, and Kim 2018), CNNs (Convolu-
tional Neural Networks) based models (Li et al. 2020; Shuai
et al. 2020), graph based models (Gu, Chen, and Monper-
rus 2021), and Pre-trained Language Models (PLMs) based
models (Feng et al. 2020; Huang et al. 2021; Guo et al. 2021,
2022).

From the view of PLMs, all of them have well perfor-
mance in code search, with complex model architecture and
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advanced training techniques. However, PLMs often treat
code search as a downstream task, which means researchers
can pre-train a model with hybrid objectives and multiple
program language code data, then fine-tune it in a specific
program language for code search (Guo et al. 2022; Feng
et al. 2020; Guo et al. 2021; Niu et al. 2022). Our empirical
study shows that there might be a performance decline when
fine-tuning with data in multiple languages. Table 1 shows
MRR (Mean Reciprocal Rank, Voorhees 1999) comparisons
between single program language fine-tuned models, and
multiple program language fine-tuned models. The left first
column indicates what program languages have been used
in fine-tuning and the rest columns show the search per-
formance toward a specific language according to the first
column. Similar to multilingual models (Yu, Fei, and Li
2021; Yang et al. 2021), code information can be roughly
divided into identity information, distinguishing code from
another code written in different program languages, and se-
mantic information, which reveals its intention and with a
corresponding natural language description. In code search,
code semantic information is only needed, for it is matched
with specific queries. The identity information may con-
found model training and decrease performance when fine-
tuning with multiple program language data. We view iden-
tity information as the signal that helps to distinguish dif-
ferent program language data, which has the same idea as
classification. Semantic information reveals the code inten-
tion, which is related to code search.

Therefore, we want to reduce the identity information of
the embedding vector given by code search pre-trained mod-
els. We propose two strategies for disentangling. The first is
to follow the idea of GAN (Generative Adversarial Network,
Goodfellow et al. 2020) and leverage a generator to gener-
ate identity free embedding vectors. The second is to use an
additional network to obtain identity and semantic vectors
separately. We consider maximizing KL divergence in the
loss function.

In summary, our contributions are:
1. Reveal the performance decline problem that appears

when fine-tuning code search with multiple program lan-
guages.

2. We propose different disentangling strategies for split-
ting identity and semantic information of the embedding
vectors output by pre-train code models.



Table 1: Performance comparisons with different fine-tuning
program languages

Python Go Java PHP

Python 0.369
Go 0.904
Java 0.764
PHP 0.708
Python Java 0.468 0.708 ↓
Python Go 0.404 0.882 ↓
Java Go 0.902 ↓ 0.724 ↓
Java PHP 0.743 ↓ 0.707 ↓
Java Python Go 0.571 0.889 ↓ 0.701 ↓

2 Related Work
Our work is related to the following two fields:

2.1 Code Search
Recent years’ works adopt deep learning models in code
search, of which the idea is to embed natural language
queries and program code into vectors and then calculate
their similarity score. Fig 1 shows the framework of code
search: a code encoder, a natural language encoder, and a
similarity calculator. The encoder transforms code or queries
into high-dimensional vectors, which are considered seman-
tic information. The calculator o computes the similarity be-
tween the two vectors.

Encoder Encoder

Caculator

Code Query

Embedding vector Embedding vector

Sim Score

Figure 1: Structure of the search enhancement framework.

Models in code search based on deep learning can be
roughly divided into the following aspects:

(1) RNN based models. Gu et al. (Gu, Zhang, and Kim
2018) build two networks to embed queries and program
code into vectors, respectively. Cosine similarity is used to
compute the similarity between the vectors.

(2) CNNs based models. Followed by (Gu, Zhang, and
Kim 2018), Li et al. (Li et al. 2020) construct “name-query”
and “body-query” latex match matrix with fastText (Joulin
et al. 2016) and use CNNs to extract features.

(3) PLMs. Feng et al. (Feng et al. 2020) followed the idea
of BERT (Devlin et al. 2019) and proposed a pre-train model
training on CSN (Husain et al. 2019) dataset with hybrid ob-
jective functions: MLM (Masked Language Modeling) and

RTD (Replaced Token Detection). (Guo et al. 2021) lever-
age data flow to enhance code representation. For the code
data flow, they specifically designed a series of pre-training
tasks: MLM, Edge Prediction, and Node Alignment. (Guo
et al. 2022) tranfrom code AST (Abstract Syntex Tree) to
a sequence structure, thus the pre-training can utilize multi-
modal contents.

2.2 Generative Adversarial Nets
Adversarial training is an effective approach to enhance the
robustness of a deep learning model(Bai et al. 2021). And
generative models are able to learn the probability distri-
bution that generated the training examples. Generative ad-
versarial networks(GANs) then performs well in generat-
ing more examples from the estimated probability distribu-
tion(Goodfellow et al. 2020) so that it becomes a hot re-
search topic recently.

Generally, GAN(Goodfellow et al. 2014) is similar to a
minimax two-player game: one is a generative model G that
captures the data distribution, and the other player is a dis-
criminative model D that estimates the probability that an
example came from the training data rather than G, i.e. to
determine whether an example is from the model distribu-
tion or the data distribution. Both G and D are defined by
multilayer perceptrons and are trained simultaneously. Com-
petitions among these two players drives both to improve
their performance respectively. And the value function in
this game can be referred to as

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]
(1)

where pdata(x) is the distribution over data x, z is the in-
put noise, G(z) represents a mapping from z to data space,
and D(x) refers to the probability that x came from the data
rather than G.

In practice, the GANs must be implemented using an it-
erative, numerical approach, i.e. alternating between k steps
of optimizing D and one step of optimizing G. And finally
the training or the game terminates at a saddle point that is
a minimum with respect to one player’s strategy and a max-
imum with respect to the other player’s strategy.

3 Methodology
We propose two strategies to improve code search perfor-
mance based on the assumption that identity information
will confuse the model when fine-tuning multiple language
data. Instead of changing the structure and pre-training the
whole code search model, we focus on transforming the
model output embedding vectors during the fine-tuning pro-
cess, which is less computing complexity.

The first strategy is leveraging GAN to eliminate identity
information. The second strategy is to distance the KL di-
vergence (Yu et al. 2013) between identity embedding and
semantic embedding.
Identity and semantic information. The identity informa-
tion we consider as the syntax signal of different program
languages, which distinguishes them from each other. We



consider the identity information as the signal that the model
can classify each program language data correctly. The se-
mantic information is the intention of a code snippet, which
describes the function of the code.

3.1 Strategy 1
In this section, we introduce a GAN-based enhance network,
which contains a generator and a discriminator. We start by
introducing the basic idea and the model structure. Then we
describe the training procedure in this paper in detail.
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Figure 2: Structure of the search enhancement framework.

The GAN structure is used widely in image generation.
Generally, it contains two sub-network: a generator, which
aims at generating data of a specific distribution, and a dis-
criminator, which intends to determine the generated data
if it is in the ideal distribution. In this paper, we introduce
an MLP (Multilayer Perceptron) as the generator, of which
the purpose is to generate high-dimensional vectors free of
identity information. We also use another MLP as the dis-
criminator. The object of the discriminator is to determine
whether the vector generator produced contains identity in-
formation. The structure of the network can be seen in Fig 2.

Algorithm 1: Stragegy 1 training process
1 for epoch_idx in total_epoch_num:
2 for step, batch in dataloader:
3 code_inputs, nl_inputs, labels =

batch
4 code_vec, nl_vec = CodeBERT(

code_inputs, nl_inputs)
5 search_embedding_vec = generator(

code_vec)
6 if step < 2000:
7 train_search_model()
8 elif (step / 500) % 2 == 0 and step

>= 2000:
9 train_discriminator()

10 elif step >= 2000 and step / 500 % 2
!= 0:

11 train_generator()

We give the training process of strategy 1 in Algorithm 1.
First, we obtain the embedding vectors of code and natu-
ral language descriptions. At the first 2,000 step of a epoch,
we update the code search process, with the object of min-
imizing the distance between code snippets and their cor-
responding descriptions. Then, alternating update generator
and discriminator every 500 steps.

3.2 Strategy 2
Although GAN has a strong ability of learning and manipu-
lating data distribution, it is hard to be trained, and can eas-
ily suffer from gradient vanishing (Adler and Lunz 2018).
Therefore, we propose an MLP-based network to disentan-
gle identity and semantic information. The overlook of the
network can be seen in Fig 3.

The network takes embedding vectors extracted by Code-
BERT as the input. Then, the input vector will be put into
MLPs and can obtain two high-dimensional vectors: V1 and
V2. We hope that V1 possesses identity information and V2

possesses semantic information. Therefore, we use V1 for
classification and V2 for code search, in order to extract iden-
tity and semantic information, respectively. Then, we maxi-
mize KL divergence, which is illustrated in Eq, between V1

and V2. Finally, V2 can be viewed as the sentence embedding
of a input code snippet without identity information and can
be further used for code search.
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Figure 3: Overlook of strategy 2

According to the above, learning the disentangle network
involves finding parameters θ = (W, b) that minimize the
hybrid loss on the given dataset, and the objective is given as
Eq 5, where α1, α2, α3 are hyperparameters, and the sum of
them is equal to 1. Besides, Eq 2 represents the code search
loss, intends to keep search performance, where sim is the
similarity score and ci is the ith code and qi is the ith query.
Eq 3 is the classification loss, the purpose is to extract iden-
tity information. Eq 4 leverages KL divergence to maximize
the distribution of the embedding vectors output by the dis-
entangle network.

L1 =
1

n

n∑
i=1

(1− sim (encoder (ci) , encoder (qi)) (2)

L2 =
1

n

n∑
i=1

k∑
j=1

−yi,j log (pi,j) (3)

L3 =
1

n

n∑
i=1

(α−KL (V1,i, V2,i)) (4)

θ = min
θ

α1L1+α2L2 + α3L3 (5)



4 Experiment
4.1 Experiment Setting
Dataset. The dataset we used is the Code Search Net
dataset (Husain et al. 2019) preprocessed by GraphCode-
BERT (Guo et al. 2021). The parameter of the dataset is
given below. We remove the data of Ruby and Javascript,
as they are much less than other data.
Baseline model. We choose CodeBERT (Feng et al. 2020)
as the baseline model. It plays an important role in extracting
code and query features. It is the encoder that first embed
a code snippet or a natural query into a high-dimensional
vector.
Disentangle network. We use multiple linear perceptron as
the basic layers of the network. We use ReLU (Agarap 2018)
as the activation.
Training setting. We use an RTX 3090 GPU for training.
The batch size of the training procedure is 128. The total
training epoch number is 3. We use the package of Trans-
formers 4.24.0 and Pytorch 1.12.0, based on Python 3.8.13.

Figure 4: Loss change of discirminator during training.

4.2 Analysing Training Process
Disentangle Network 1. We illustrated the change of dis-
criminator loss during training in Fig 4. It is obviously that
the loss of the discriminator is able to converge, while there
is still slightly increment in some period, e.g., step 50 and
step 100. Fig 5 shows the loss change of the generator dur-
ing training. There might be overfitting, as the loss first de-
creases and then rises with increasing iterations.

Figure 5: Loss change of generator during training.

Figure 6: Loss of network 2 during training.

Disentangle Network 2. We list hybrid loss change of net-
work based on strategy 2 in Fig 6. It is apparent the loss is
decreasing and able to converge. Fig 7 represents the evalua-
tion index change in the training period, using MRR, which
is shown in Eq 6, as the index and with the evaluation step
of 2, 000.

Figure 7: MRR change in evaluation during training.

4.3 Analysing Embedding Vectors after
Disentangling

Intuitively, identity and semantic information can be divided
easily after applying the disentangle strategy we proposed.
Thus, we first use t-SNE (Van der Maaten and Hinton 2008),
which is a dimensionality reduction method, to reduce high-
dimensional vectors to 2 dimensions. Then we visualize the
2-dimensional vectors. We sample 5, 000 code snippets from
the whole dataset. And then draw the embedding graph. For
the strategy 1 network, we visualize the vectors output by
the origin CodeBERT and the generator. For the strategy 1,
we illustrate embedding vectors output by CodeBERT and
disentangle network in Fig 9. Compared to the CodeBERT
vectors, i.e., blue points, the generator output, i.e., yellow
points, is less concentrated in the same area. For the strat-
egy 2, we visualize v1 and v2 vector, which is considered
have identity and semantic information, respectively. From
the graph 8 we can see that, two types of the vectors can
basically be separated.

4.4 Analysing Code Search Results
In this section, we try to figure out the code search perfor-
mance of two disentangle networks. We use MRR as the



Figure 8: Embedding vector comparision of strategy 2 net-
work.

Figure 9: Embedding vector comparision of strategy 1 net-
work.

evaluation indicator, which is the reciprocal of the correct re-
sult among all returned results and it is given as Eq 6, where
Q is the total test number and ranki represents the correct
rank among all results..

MRR =
1

Q

Q∑
i=1

1

ranki
(6)

Table 2: MRR Comparisions

Strategy 1 Strategy 2

Python 0.597 0.601
Go 0.873 0.882

Java 0.712 0.703
Php 0.684 0.673

Table 1 shows the code search MRR results. The left first
column indicates the language of data. The top row indicates
the strategy we proposed. From the results we can see that

there is a small performance increment in Python, compared
to the original results in 1, while a slightly decrease occurs
in other languages. It is clear that strategy 1 and strategy 2
can reach a similar result, while Java and Php data have a
better MRR in strategy 1, and Python and Go data are better
in strategy 2.

5 Discussion and Conclusion
In this paper, we propose two disentangle strategies for tack-
ling performance decline when fine-tuning CodeBERT for
the code search task with multiple language data. In strategy
1, we leverage a GAN-based model, to eliminate identity
information. In strategy 2, we use MLPs to divide embed-
dings by maximize their KL divergence. Experiments show
our work achieve some results.

However, we only consider identity information as the
signal that distinguish program languages from each other,
e.g., a classification task. Whether the identity information
is equal to syntax information, needs more experiments to
proof. Besides, the code search performance still have room
for improvement. We hope our work can be reference for the
same field researchers.
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